Introduction to the Delta Wye Transformer Part 7b

Resources Section

This video tutorial does not items in the resources section

Do you have a question? Click on the "Q&A forum" and ask away!

Introduction to the Delta Wye transformer connection. Part 7b.

Okay there is one more thing we really need to note about the voltage across the primary winding and the voltage across the secondary winding.

Because the HV winding A and the LV winding a are magnetically coupled, we know that the voltage across the phase A winding will be in phase with the voltage across the secondary winding which we also defined as Vag. Okay so they are going to be in phase because the two windings are magnetically coupled.

But that doesn't mean that the magnitude of the HV winding is going to equal --- so it's not going to equal the magnitude of voltage on the LV winding.  So the magnitudes will definitely differ. But whatever the magnitudes will be, they will be in phase. So that's one characteristic that we really need to understand.

Okay so before we explain that concept in this phasor diagram – if you haven't already, please click on the bottom right hand corner of the screen – there should be a subscribe button. Please subscribe to this channel.

Okay so here is open phasor diagram for the illustration that we did above. Now this illustration comes from the previous video tutorials, so if you haven't watched the previous video tutorials, this won't make very much sense.

What we're saying is that this phasor here – we've defined this phasor as the voltage across line A and line B. Which is equal to the voltage across winding A on the HV side. And what we've said was the LV side will have the same phase as this phasor but the magnitudes will be different.

So this orange here is an illustration of the LV winding. It's the same phase as V phase A, but the magnitude of it is smaller because it's a LV winding. So I'm going to define this as V phase a which is equal to Vag on the LV winding.

Similarly, we're going to represent the LV winding b and c in this phasor diagram. Okay so there you have it, this phasor here represents the voltage across the LV winding. And as you can see, it's in phase with the voltage across the HV winding for winding B. But the magnitude of it is obviously smaller.

The voltage across the LV winding for winding c is in phase with the voltage across the HV winding for winding C but the magnitude of the LV winding is smaller.

So that's how you represent the HV winding and the LV winding for the delta wye transformer connection.

This was a necessary step to understanding the phase shift. In part 7c, we're going to analyze how this transformer connection is defined formally like this and informally like this.

If you want to know when part 7c is going to come out, please go ahead and subscribe.

This video was brought to you by Making power system protection, automation, and controls intuitive.

Greetings from the GeneralPAC Team!

We make high-quality Power Systems Video Tutorials on complex topics that are free and open to everyone!  Thank you so much for supporting us through Patreon so can continue doing good and valuable work.

What is Patreon and why do we use it?

Patreon is a fantastic portal that allows our fans and community to make monthly contribution (like Netflix subscription) so we can continue creating high-quality power systems video tutorials. In return, you get access to incredible perks like voting on future topics, getting your questions answered, access to VIP Q/A webinars with the creators of GeneralPAC, and much more! We THANK YOU for supporting us

Why do we need your support?

An incredible amount of time and effort is needed to develop high-quality video tutorials. Each video (Part 1 for example) takes approximately 10 hours to complete which includes learning the concept ourselves, brainstorming creative ways to teach and explain the concepts, writing the script, audio recording, video recording, and editing. It's no wonder why Hundreds-of-Thousands of people have watched, liked, subscribed, and left positive comments on Youtube channel. Your support truly makes all the difference.

Become a patron today!